Publication:
A second-order dynamical system for equilibrium problems
A second-order dynamical system for equilibrium problems
datacite.subject.fos | oecd::Engineering and technology | |
dc.contributor.author | Le Van Vinh | |
dc.contributor.author | Van Nam Tran | |
dc.contributor.author | Phan Tu Vuong | |
dc.date.accessioned | 2022-10-31T06:30:21Z | |
dc.date.available | 2022-10-31T06:30:21Z | |
dc.date.issued | 2022 | |
dc.description.abstract | We consider a second-order dynamical system for solving equilibrium problems in Hilbert spaces. Under mild conditions, we prove existence and uniqueness of strong global solution of the proposed dynamical system. We establish the exponential convergence of trajectories under strong pseudo-monotonicity and Lipschitz-type conditions.We then investigate a discrete version of the second-order dynamical system, which leads to a fixed point-type algorithm with inertial effect and relaxation. The linear convergence of this algorithm is established under suitable conditions on parameters. Finally, some numerical experiments are reported confirming the theoretical results. | |
dc.identifier.doi | 10.1007/s11075-022-01264-4 | |
dc.identifier.uri | http://repository.vlu.edu.vn:443/handle/123456789/396 | |
dc.language.iso | en_US | |
dc.relation.ispartof | Numerical Algorithms | |
dc.relation.issn | 1017-1398 | |
dc.relation.issn | 1572-9265 | |
dc.subject | "Dynamic programming · Equilibrium problem · Monotonicity · Lipschitz continuity · Exponential stability · Linear convergence" | |
dc.title | A second-order dynamical system for equilibrium problems | |
dc.type | journal-article | |
dspace.entity.type | Publication | |
oaire.citation.issue | 1 | |
oaire.citation.volume | 91 |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- AS166.pdf
- Size:
- 876.75 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed to upon submission
- Description: