Publication:
A second-order dynamical system for equilibrium problems

datacite.subject.fos oecd::Engineering and technology
dc.contributor.author Le Van Vinh
dc.contributor.author Van Nam Tran
dc.contributor.author Phan Tu Vuong
dc.date.accessioned 2022-10-31T06:30:21Z
dc.date.available 2022-10-31T06:30:21Z
dc.date.issued 2022
dc.description.abstract We consider a second-order dynamical system for solving equilibrium problems in Hilbert spaces. Under mild conditions, we prove existence and uniqueness of strong global solution of the proposed dynamical system. We establish the exponential convergence of trajectories under strong pseudo-monotonicity and Lipschitz-type conditions.We then investigate a discrete version of the second-order dynamical system, which leads to a fixed point-type algorithm with inertial effect and relaxation. The linear convergence of this algorithm is established under suitable conditions on parameters. Finally, some numerical experiments are reported confirming the theoretical results.
dc.identifier.doi 10.1007/s11075-022-01264-4
dc.identifier.uri http://repository.vlu.edu.vn:443/handle/123456789/396
dc.language.iso en_US
dc.relation.ispartof Numerical Algorithms
dc.relation.issn 1017-1398
dc.relation.issn 1572-9265
dc.subject "Dynamic programming · Equilibrium problem · Monotonicity · Lipschitz continuity · Exponential stability · Linear convergence"
dc.title A second-order dynamical system for equilibrium problems
dc.type journal-article
dspace.entity.type Publication
oaire.citation.issue 1
oaire.citation.volume 91
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
AS166.pdf
Size:
876.75 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: