Publication:
Image Recognition Using Unsupervised Learning Based Automatic Fuzzy Clustering Algorithm
Image Recognition Using Unsupervised Learning Based Automatic Fuzzy Clustering Algorithm
No Thumbnail Available
Files
Date
2021
Authors
Lê Thị Kim Ngọc
Journal Title
Journal ISSN
Volume Title
Publisher
Research Projects
Organizational Units
Journal Issue
Abstract
This article proposes a novel techniques for unsupervised learning in image recognition using automatic fuzzy clustering algorithm (AFCA) for discrete data. There are two main stages in order to recognize images in this study. First of all, new technique is shown to extract sixty four textural features from n images represented by a matrix n × 64. Afterwards, we use the proposed method based on Hausdorff distance to simultaneously determine the appropriate number of clusters. At the end of the unsupervised clustering process, discrete data belonging to the same cluster converge to the same position, which represents the cluster’s center. After determining number of cluster, we have probability of assigning objects to the established clusters. The simulation result built by Matlab program shows the effectiveness of the proposed method using the corrected rand, the partition entropy, and the partition coefficients index. The experimental outcomes illustrate that the proposed method is better than the existing ones as Fuzzy C-mean. As a result, we believe that the proposed method is filled with a potential possibility which can be applied in practical realization.
Description
Keywords
Automatic algorithm,
Hausdorff distance,
Image recognition,
Fuzzy,
Unsupervised clustering