Publication:
Classifying maturity of cherry tomatoes using Deep Transfer Learning techniques

datacite.subject.fos oecd::Engineering and technology
dc.contributor.author Danh Phuoc Huynh
dc.contributor.author My Van Vo
dc.contributor.author Nghin Van Dang
dc.contributor.author Tri Quoc Truong
dc.date.accessioned 2022-11-03T08:34:12Z
dc.date.available 2022-11-03T08:34:12Z
dc.date.issued 2021
dc.description.abstract This research studies a method to classify the tomatoes’ maturity by using deep transfer learning techniques. We carry out sorting systems adopting three pre-trained convolutional neural networks of VGG16, VGG19, and ResNet101. The experimental results show that the VGG19 model obtains a high precision on both the train set and the test set
dc.identifier.doi 10.1088/1757-899X/1109/1/012058
dc.identifier.uri http://repository.vlu.edu.vn:443/handle/123456789/819
dc.language.iso en_US
dc.relation.ispartof IOP Conference Series: Materials Science and Engineering
dc.relation.issn 1757-8981
dc.relation.issn 1757-899X
dc.title Classifying maturity of cherry tomatoes using Deep Transfer Learning techniques
dc.type journal-article
dspace.entity.type Publication
oaire.citation.issue 1
oaire.citation.volume 1109
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
AS362.pdf
Size:
1.05 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: