Publication:
Stability of fractional order of time nonlinear fractional diffusion equation with Riemann–Liouville derivative

datacite.subject.fos oecd::Natural sciences::Mathematics
dc.contributor.author Le Dinh Long
dc.contributor.author Ho Duy Binh
dc.contributor.author Devendra Kumar
dc.contributor.author Nguyen Hoang Luc
dc.contributor.author Nguyen Huu Can
dc.date.accessioned 2022-11-09T07:49:35Z
dc.date.available 2022-11-09T07:49:35Z
dc.date.issued 2022
dc.description.abstract In this paper, we investigate an equation of nonlinear fractional diffusion with the derivative of Riemann–Liouville. Firstly, we determine the global existence and uniqueness of the mild solution. Next, under some assumptions on the input data, we discuss continuity with regard to the fractional derivative order for the time. Our key idea is to combine the theories Mittag–Leffler functions and Banach fixed-point theorem. Finally, we present some examples to test the proposed theory.
dc.identifier.doi 10.1002/mma.8166
dc.identifier.uri http://repository.vlu.edu.vn:443/handle/123456789/1065
dc.language.iso en_US
dc.relation.ispartof Mathematical Methods in the Applied Sciences
dc.relation.issn 0170-4214
dc.relation.issn 1099-1476
dc.subject Continuity estimates
dc.subject Dirichlet boundary value problem
dc.subject Fractional diffusion equation
dc.subject Liouville derivative
dc.title Stability of fractional order of time nonlinear fractional diffusion equation with Riemann–Liouville derivative
dc.type journal-article
dspace.entity.type Publication
oaire.citation.issue 10
oaire.citation.volume 45
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
notepad.txt
Size:
0 B
Format:
Plain Text
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: