Publication:
Inverse Source Problem for Sobolev Equation with Fractional Laplacian

datacite.subject.fos oecd::Natural sciences::Mathematics
dc.contributor.author Nguyen Duc Phuong
dc.contributor.author Van Tien Nguyen
dc.contributor.author Le Dinh Long
dc.contributor.editor Yusuf Gurefe
dc.date.accessioned 2022-10-29T11:21:49Z
dc.date.available 2022-10-29T11:21:49Z
dc.date.issued 2022
dc.description.abstract In this paper, we are interested in the problem of determining the source function for the Sobolev equation with fractional Laplacian. This problem is ill-posed in the sense of Hadamard. In order to edit the instability instability of the solution, we applied the fractional Landweber method. In the theoretical analysis results, we show the error estimate between the exact solution and the regularized solution by using an a priori regularization parameter choice rule and an a posteriori regularization parameter choice rule. Finally, we investigate the convergence of the source function when fractional order .
dc.identifier.doi 10.1155/2022/1035118
dc.identifier.uri http://repository.vlu.edu.vn:443/handle/123456789/341
dc.language.iso en_US
dc.relation.ispartof Journal of Function Spaces
dc.relation.issn 2314-8888
dc.relation.issn 2314-8896
dc.title Inverse Source Problem for Sobolev Equation with Fractional Laplacian
dc.type journal-article
dspace.entity.type Publication
oaire.citation.volume 2022
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
AS75.pdf
Size:
575.56 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: