Journal Articles - Mathematic and Statistic - 2020
Permanent URI for this collection
Browse
Recent Submissions
1 - 5 of 6
-
PublicationMột đồng nhất thức trên đa thức đối xứng( 2020)Trong bài báo này, chúng tôi đưa ra và chứng minh một đồng nhất thức trên đa thức đối xứng. Để nhận được đồng nhất thức này, chúng tôi sử dụng lý thuyết nội suy, cụ thể là công thức nội suy Lagrange. Trong phần chứng minh đồng nhất thức, chúng tôi đưa ra hai cách chứng minh khác nhau. Cách chứng minh thứ hai sẽ là bước khởi đầu cho những nghiên cứu xa hơn của chúng tôi liên quan đến các đồng nhất thức trên đa thức đối xứng.
-
PublicationThuật toán "Tựa Newton" cho bài toán quy hoạch toàn phương lồi( 2020)Bài báo này trình bày ngắn gọn những kiến thức cơ bản của quy hoạch phi tuyến, tập trung chủ yếu vào thuật toán “Tựa Newton”, và áp dụng thuật toán này để giải bài toán quy hoạch toàn phương lồi. Đây là thuật toán “khá tốt” để từ đó ta viết chương trình cho máy vi tính đi tìm nghiệm (xấp xỉ) của bài toán tối ưu toàn phương lồi. Với các ví dụ minh họa trình bày trong bài báo, chúng ta sẽ thấy được các nghiệm xấp xỉ cho từng bước giải, và hơn nữa ta sẽ thấy được điểm mạnh của thuật toán này.
-
PublicationDeconvolution of ℙ(X<Y) with unknown error distributions( 2020)This paper is devoted to a nonparametric estimation of the probability θ : = ℙ ( X < Y ) , where X, Y are continuous univariate random variables of interest and observed with additional random errors. We focus on the case where the distributions of the random errors are unknown but symmetric around zero and can be estimated from some additional samples. Using deconvolution techniques, we propose an estimator of θ which depends on a regularization parameter. We then establish upper and lower bounds on convergence rate of the estimator under mean squared error when error densities are assumed to be supersmooth.
-
PublicationDeconvolution of ℙ(X<Y) with unknown error distributions( 2020)This paper is devoted to a nonparametric estimation of the probability θ:=P(X
-
PublicationAn Efficient Method for Mining Top-K Closed Sequential Patterns( 2020)The problem of exploiting Closed Sequential Patterns (CSPs) is an essential task in data mining, with many different applications. It is used to resolve the situations of huge databases or low minimum support (minsup) thresholds in mining sequential patterns. However, it is challenging and needs a lot of time to customize the minsup values for generating appropriate numbers of CSPs desired by users. To conquer this issue, the TSP algorithm for mining top-k CSPs was previously proposed, with k being a given parameter. The algorithm would return the k CSPs which have the highest support values in a database. However, its execution time and memory usage were high. In this paper, an algorithm named TKCS (Top-K Closed Sequences) is proposed to mine the top-k CSPs ef ciently. To improve the execution time and memory usage, it uses a vertical bitmap database to represent data. Besides, it adopts some useful strategies in the process of exploiting the top-k CSPs such as: always choosing the sequential patterns with the greatest support values for generating candidate patterns and storing top-k CSPs in an ascending order of the support values to increase the minsup value more quickly. The empirical results show that TKCS has better performance than TSP for discovering the top-k CSPs in terms of both runtime and memory usage.