Repository logo
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    or
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Projects
  • People
  • Statistics
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    or
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Scientific Publication
  3. Journal Articles
  4. Journal Articles - Engineering Technology
  5. Journal Articles - Engineering Technology - 2022
  6. Prediction of the fuel spray characteristics in the combustion chamber with methane and TiO2 nanoparticles via numerical modelling
 
Options

Prediction of the fuel spray characteristics in the combustion chamber with methane and TiO2 nanoparticles via numerical modelling

Journal
Fuel
ISSN
1873-7153
Date Issued
2022
Author(s)
Dongwei Shao, Sami Al Obaid, Sulaiman Ali Alharbi, Josef Marouˇsek, Manigandan Sekar, P. Gunasekar, Nguyen Thuy Lan Chi, Kathirvel Brindhadevi, Junfa Wang, Donghua Jiang
DOI
https://doi.org/10.1016/j.fuel.2022.124820
Abstract
In this study the methane combustion was analysed with the TiO2 nanoparticles. A series of the simulation runs were performed by varying the fuel inlet velocity. However, the oxidizer and the nanoparticles spray were maintained constant for the entire run. The spray velocity varied from 100 m/s to 200 m/s with titanium dioxide (TiO2) nanoparticles. Using the series of the governing equation and modified Navier Stokes equation the model has been developed with the aid of numerical workbench. Three different domains are generated for fuel, oxidizer and nanoparticles. The velocity of the air and nanoparticles were maintained at constant levels and varying only the spray velocity of the fuel. Based on the findings, the mass fraction of both fuel and formation of the CO2 were dependent on the spray velocity. As the spray velocity increases the turbulence in the combustion chamber increases which ensures the higher mixing of both air–fuel and nanoparticles. From the procured findings 175 m/s and 200 m/s were the ideal range for better combustion efficiency compared to 100 m/s and 150 m/s. The simulation results have ascertained the role of the spray velocity on the emissions and the combustion efficiency of the engine. It is hoped that obtained results can provide directions to work on the combustion of the methane with the nanoparticles at the optimized spray velocity.
Subjects
  • Spray velocity

  • Methane

  • Combustion

  • Nanoparticles

  • Reaction rates

  • Numerical modelling

File(s)
AS683.txt (0 B)
google-scholar
Views
Downloads
VAN LANG UNIVERSITY LIBRARY

Phone: (+84) 28.71099217 (3220)

Email: thuvien@vlu.edu.vn

Office: 6th Floor, Building A, 69/68 Dang Thuy Tram Street, Binh Loi Trung Ward, Ho Chi Minh City

VAN LANG UNIVERSITY

Main Campus: 69/68 Dang Thuy Tram Street, Binh Loi Trung Ward, Ho Chi Minh City

Campus 1: 45 Nguyen Khac Nhu Street, Cau Ong Lanh Ward, Ho Chi Minh City

Campus 2: 233A Phan Van Tri Street, Binh Loi Trung Ward, Ho Chi Minh City