Repository logo
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    or
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Projects
  • People
  • Statistics
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    or
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Scientific Publication
  3. Journal Articles
  4. Journal Articles - Natural Science
  5. Journal Articles - Natural Science - 2021
  6. Beta-decay half-lives of the extremely neutron-rich nuclei in the closed-shell N = 50, 82, 126 groups
 
Options

Beta-decay half-lives of the extremely neutron-rich nuclei in the closed-shell N = 50, 82, 126 groups

Journal
Journal of Physics G: Nuclear and Particle Physics
ISSN
0954-3899
1361-6471
Date Issued
2021
Author(s)
Nguyen Kim Uyen
Kyung Yuk Chae
Nguyen Ngoc Duy
Nguyen Duy Ly
DOI
10.1088/1361-6471/ac3cfa
Abstract
The β−-decay half-lives of extremely neutron-rich nuclei are important for understanding nucleosynthesis in the rapid neutron capture process (r-process). However, most of their half-lives are unknown or very uncertain, leading to the need for reliable calculations. In this study, we updated the coefficients in recent semi-empirical formulae using the newly updated mass (AME2020) and half-life (NUBASE2020) databases to improve the accuracy of the half-life prediction. In particular, we developed a new empirical model for better calculations of the β−-decay half-lives of isotopes ranging in Z = 10–80 and N = 15–130. We examined the β−-decay half-lives of the extremely neutron-rich isotopes at and around the neutron magic numbers of N = 50, 82, and 126 using either five different semi-empirical models or finite-range droplet model and quasi-particle random phase approximation method. The β−-decay rates derived from the estimated half-lives were used in calculations to evaluate the impact of the half-life uncertainties of the investigated nuclei on the abundance of the r-process. The results show that the half-lives mostly range in 0.001 < T1/2 < 100 s for the nuclei with a ratio of N/Z < 1.9; however, they differ significantly for those with the ratio of N/Z > 1.9. The half-life differences among the models were found to range from a few factors (for N/Z < 1.9 nuclei) to four orders of magnitude (for N/Z > 1.9). These discrepancies lead to a large uncertainty, which is up to four orders of magnitude, in the r-process abundance of isotopes. We also found that the multiple-reflection time-of-flight technique is preferable for precise mass measurements because its measuring timescale applies to the half-lives of the investigated nuclei. Finally, the results of this study are useful for studies on the β-decay of unstable isotopes and astrophysical simulations.
File(s)
notepad.txt (0 B)
google-scholar
Views
Downloads
VAN LANG UNIVERSITY LIBRARY

Phone: (+84) 28.71099217 (3220)

Email: thuvien@vlu.edu.vn

Office: 6th Floor, Building A, 69/68 Dang Thuy Tram Street, Binh Loi Trung Ward, Ho Chi Minh City

VAN LANG UNIVERSITY

Main Campus: 69/68 Dang Thuy Tram Street, Binh Loi Trung Ward, Ho Chi Minh City

Campus 1: 45 Nguyen Khac Nhu Street, Cau Ong Lanh Ward, Ho Chi Minh City

Campus 2: 233A Phan Van Tri Street, Binh Loi Trung Ward, Ho Chi Minh City