Repository logo
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    or
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Projects
  • People
  • Statistics
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Log In
    or
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Scientific Publication
  3. Journal Articles
  4. Journal Articles - Engineering Technology
  5. Journal Articles - Engineering Technology - 2021
  6. A Composite Method for Improving the Pulse Shape Discrimination Efficiency of a Scintillation Detector Using EJ-301 Liquid
 
Options

A Composite Method for Improving the Pulse Shape Discrimination Efficiency of a Scintillation Detector Using EJ-301 Liquid

Journal
IEEE Transactions on Instrumentation and Measurement
ISSN
0018-9456
1557-9662
Date Issued
2021
Author(s)
Phan Van Chuan
Nguyen Xuan Hai
Nguyen Ngoc Anh
Pham Dinh Khang
Nguyen Quang Hung
Truong Van Minh
Nguyen Duy Ly
DOI
10.1109/TIM.2021.3060600
Abstract
This article presents a composite (COM) method to obtain the high-resolution pulse shape discrimination (PSD) for the neutron and gamma-ray pulses generated from scintillation detectors. The method, which is based on a selective combination of the digital charge integration (DCI) with the reference pulse method, aims to reduce the mixed radiation events in the low-energy range. An EJ-301 liquid scintillation detector together with a fast sampling analog-to-digital converter (ADC) is used to measure and digitize the pulses induced from the radioactive decays of 60 Co and 252 Cf, which are then analyzed by our COM method. The proposed method is evaluated using the figure of merit (FoM) and separation quality function F(u), and the results are compared with three known methods, namely the DCI, standard event fit (SEF), and artificial neural network (ANN) methods. We show that the average values of FoM and F(u) obtained within the COM method are about ten times higher than those obtained within the DCI and SEF in the whole energy range from 50 to 1000 keV electron equivalent (keVee). In particular, by using the COM method, the percentage of gamma events being confused as neutrons ranges from 0.32% to 8.80% when the energy is reduced from 400 to 50 keVee. This finding, which is significantly lower than those obtained by using the DCI and SEF, indicates that the proposed COM method should be considered as a leading method for producing a neutron/gamma PSD counter system with high resolution.
Subjects
  • "Neutrons

  • Detectors

  • Shape

  • Liquids

  • Urban areas

  • Pulse measurements

  • Shape measurement"

File(s)
notepad.txt (0 B)
google-scholar
Views
Downloads
VAN LANG UNIVERSITY LIBRARY

Phone: (+84) 28.71099217 (3220)

Email: thuvien@vlu.edu.vn

Office: 6th Floor, Building A, 69/68 Dang Thuy Tram Street, Binh Loi Trung Ward, Ho Chi Minh City

VAN LANG UNIVERSITY

Main Campus: 69/68 Dang Thuy Tram Street, Binh Loi Trung Ward, Ho Chi Minh City

Campus 1: 45 Nguyen Khac Nhu Street, Cau Ong Lanh Ward, Ho Chi Minh City

Campus 2: 233A Phan Van Tri Street, Binh Loi Trung Ward, Ho Chi Minh City